Python人工智能—线性回归

news/2024/7/18 17:59:56 标签: python, 人工智能, 线性回归

线性回归

输入		输出
0.5      5.0
0.6      5.5
0.8      6.0
1.1      6.8
1.4      7.0
...
y = f(x)

预测函数:y = w0+w1x
x: 输入
y: 输出
w0和w1: 模型参数

所谓模型训练,就是根据已知的x和y,找到最佳的模型参数w0 和 w1,尽可能精确地描述出输入和输出的关系。

5.0 = w0 + w1 × 0.5
5.5 = w0 + w1 × 0.6

单样本误差:

根据预测函数求出输入为x时的预测值:y’ = w0 + w1x,单样本误差为1/2(y’ - y)2

总样本误差:

把所有单样本误差相加即是总样本误差:1/2 Σ(y’ - y)2

损失函数:

loss = 1/2 Σ(w0 + w1x - y)2

所以损失函数就是总样本误差关于模型参数的函数,该函数属于三维数学模型,即需要找到一组w0 w1使得loss取极小值。

案例:画图模拟梯度下降的过程

  1. 整理训练集数据,自定义梯度下降算法规则,求出w0 , w1 ,绘制回归线。
python">import numpy as np
import matplotlib.pyplot as mp
train_x = np.array([0.5, 0.6, 0.8, 1.1, 1.4])
train_y = np.array([5.0, 5.5, 6.0, 6.8, 7.0])
test_x = np.array([0.45, 0.55, 1.0, 1.3, 1.5])
test_y = np.array([4.8, 5.3, 6.4, 6.9, 7.3])

times = 1000	# 定义梯度下降次数
lrate = 0.01	# 记录每次梯度下降参数变化率
epoches = []	# 记录每次梯度下降的索引
w0, w1, losses = [1], [1], []
for i in range(1, times + 1):
    epoches.append(i)
    loss = (((w0[-1] + w1[-1] * train_x) - train_y) ** 2).sum() / 2
    losses.append(loss)
    d0 = ((w0[-1] + w1[-1] * train_x) - train_y).sum()
    d1 = (((w0[-1] + w1[-1] * train_x) - train_y) * train_x).sum()
    print('{:4}> w0={:.8f}, w1={:.8f}, loss={:.8f}'.format(epoches[-1], w0[-1], w1[-1], losses[-1]))
    w0.append(w0[-1] - lrate * d0)
    w1.append(w1[-1] - lrate * d1)

pred_test_y = w0[-1] + w1[-1] * test_x
mp.figure('Linear Regression', facecolor='lightgray')
mp.title('Linear Regression', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(train_x, train_y, marker='s', c='dodgerblue', alpha=0.5, s=80, label='Training')
mp.scatter(test_x, test_y, marker='D', c='orangered', alpha=0.5, s=60, label='Testing')
mp.scatter(test_x, pred_test_y, c='orangered', alpha=0.5, s=80, label='Predicted')
mp.plot(test_x, pred_test_y, '--', c='limegreen', label='Regression', linewidth=1)
mp.legend()
mp.show()
  1. 绘制随着每次梯度下降,w0,w1,loss的变化曲线。
python">w0 = w0[:-1]
w1 = w1[:-1]

mp.figure('Training Progress', facecolor='lightgray')
mp.subplot(311)
mp.title('Training Progress', fontsize=20)
mp.ylabel('w0', fontsize=14)
mp.gca().xaxis.set_major_locator(mp.MultipleLocator(100))
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.plot(epoches, w0, c='dodgerblue', label='w0')
mp.legend()
mp.subplot(312)
mp.ylabel('w1', fontsize=14)
mp.gca().xaxis.set_major_locator(mp.MultipleLocator(100))
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.plot(epoches, w1, c='limegreen', label='w1')
mp.legend()

mp.subplot(313)
mp.xlabel('epoch', fontsize=14)
mp.ylabel('loss', fontsize=14)
mp.gca().xaxis.set_major_locator(mp.MultipleLocator(100))
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.plot(epoches, losses, c='orangered', label='loss')
mp.legend()
  1. 基于三维曲面绘制梯度下降过程中的每一个点。
python">import mpl_toolkits.mplot3d as axes3d

grid_w0, grid_w1 = np.meshgrid(
    np.linspace(0, 9, 500),
    np.linspace(0, 3.5, 500))

grid_loss = np.zeros_like(grid_w0)
for x, y in zip(train_x, train_y):
    grid_loss += ((grid_w0 + x*grid_w1 - y) ** 2) / 2

mp.figure('Loss Function')
ax = mp.gca(projection='3d')
mp.title('Loss Function', fontsize=20)
ax.set_xlabel('w0', fontsize=14)
ax.set_ylabel('w1', fontsize=14)
ax.set_zlabel('loss', fontsize=14)
ax.plot_surface(grid_w0, grid_w1, grid_loss, rstride=10, cstride=10, cmap='jet')
ax.plot(w0, w1, losses, 'o-', c='orangered', label='BGD')
mp.legend()
  1. 以等高线的方式绘制梯度下降的过程。
python">mp.figure('Batch Gradient Descent', facecolor='lightgray')
mp.title('Batch Gradient Descent', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.contourf(grid_w0, grid_w1, grid_loss, 10, cmap='jet')
cntr = mp.contour(grid_w0, grid_w1, grid_loss, 10,
                  colors='black', linewidths=0.5)
mp.clabel(cntr, inline_spacing=0.1, fmt='%.2f',
          fontsize=8)
mp.plot(w0, w1, 'o-', c='orangered', label='BGD')
mp.legend()
mp.show()

线性回归

线性回归相关API:

python">import sklearn.linear_model as lm
# 创建模型
model = lm.LinearRegression()
# 训练模型
# 输入为一个二维数组表示的样本矩阵(一行一样本,一列一特征)
# 输出为每个样本最终的结果(一维数组)
model.fit(输入, 输出) # 通过梯度下降法计算模型参数
# 预测输出  
# 输入array是一个二维数组,每一行是一个样本,每一列是一个特征。
result = model.predict(array)

案例:基于线性回归训练single.txt中的训练样本,使用模型预测测试样本。

python">import numpy as np
import sklearn.linear_model as lm
import matplotlib.pyplot as mp
# 采集数据
x, y = np.loadtxt('../data/single.txt', delimiter=',', usecols=(0,1), unpack=True)
x = x.reshape(-1, 1)
# 创建模型
model = lm.LinearRegression()  # 线性回归
# 训练模型
model.fit(x, y)
# 根据输入预测输出
pred_y = model.predict(x)
mp.figure('Linear Regression', facecolor='lightgray')
mp.title('Linear Regression', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(x, y, c='dodgerblue', alpha=0.75, s=60, label='Sample')
mp.plot(x, pred_y, c='orangered', label='Regression')
mp.legend()
mp.show()

评估训练结果误差(metrics)

线性回归模型训练完毕后,可以利用测试集评估训练结果误差。sklearn.metrics提供了计算模型误差的几个常用算法:

python">import sklearn.metrics as sm

# 平均绝对值误差:1/m∑|实际输出-预测输出|
sm.mean_absolute_error(y, pred_y)
# 平均平方误差:SQRT(1/mΣ(实际输出-预测输出)^2)
sm.mean_squared_error(y, pred_y)
# 中位绝对值误差:MEDIAN(|实际输出-预测输出|)
sm.median_absolute_error(y, pred_y)
# R2得分,(0,1]区间的分值。分数越高,误差越小。
sm.r2_score(y, pred_y)

案例:在上一个案例中使用sm评估模型误差。

python"># 平均绝对值误差:1/m∑|实际输出-预测输出|
print(sm.mean_absolute_error(y, pred_y))
# 平均平方误差:SQRT(1/mΣ(实际输出-预测输 出)^2)
print(sm.mean_squared_error(y, pred_y))
# 中位绝对值误差:MEDIAN(|实际输出-预测输出|)
print(sm.median_absolute_error(y, pred_y))
# R2得分,(0,1]区间的分值。分数越高,误差越小。
print(sm.r2_score(y, pred_y))

模型的保存和加载

模型训练是一个耗时的过程,一个优秀的机器学习是非常宝贵的。可以模型保存到磁盘中,也可以在需要使用的时候从磁盘中重新加载模型即可。不需要重新训练。

模型保存和加载相关API:

python">import pickle
pickle.dump(内存对象, 磁盘文件) # 保存模型
model = pickle.load(磁盘文件)  # 加载模型

案例:把训练好的模型保存到磁盘中。

python"># 将训练好的模型对象保存到磁盘文件中
with open('../../data/linear.pkl', 'wb') as f:
    pickle.dump(model, f)
    
# 从磁盘文件中加载模型对象
with open('../../data/linear.pkl', 'rb') as f:
    model = pickle.load(f)
# 根据输入预测输出
pred_y = model.predict(x)

岭回归

普通线性回归模型使用基于梯度下降的最小二乘法,在最小化损失函数的前提下,寻找最优模型参数,于此过程中,包括少数异常样本在内的全部训练数据都会对最终模型参数造成程度相等的影响,异常值对模型所带来影响无法在训练过程中被识别出来。为此,岭回归在模型迭代过程所依据的损失函数中增加了正则项,以限制模型参数对异常样本的匹配程度,进而提高模型面对多数正常样本的拟合精度。

python">import sklearn.linear_model as lm
# 创建模型
model = lm.Ridge(正则强度,fit_intercept=是否训练截距(true), max_iter=最大迭代次数)
# 训练模型
# 输入为一个二维数组表示的样本矩阵
# 输出为每个样本最终的结果
model.fit(输入, 输出)
# 预测输出  
# 输入array是一个二维数组,每一行是一个样本,每一列是一个特征。
result = model.predict(array)

案例:加载abnormal.txt文件中的数据,基于岭回归算法训练回归模型。

python">import numpy as np
import sklearn.linear_model as lm
import matplotlib.pyplot as mp
# 采集数据
x, y = np.loadtxt('../data/single.txt', delimiter=',', usecols=(0,1), unpack=True)
x = x.reshape(-1, 1)
# 创建线性回归模型
model = lm.LinearRegression() 
# 训练模型
model.fit(x, y)
# 根据输入预测输出
pred_y1 = model.predict(x)
# 创建岭回归模型
model = lm.Ridge(150, fit_intercept=True, max_iter=10000) 
# 训练模型
model.fit(x, y)
# 根据输入预测输出
pred_y2 = model.predict(x)

mp.figure('Linear & Ridge', facecolor='lightgray')
mp.title('Linear & Ridge', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(x, y, c='dodgerblue', alpha=0.75,
           s=60, label='Sample')
sorted_indices = x.T[0].argsort()
mp.plot(x[sorted_indices], pred_y1[sorted_indices],
        c='orangered', label='Linear')
mp.plot(x[sorted_indices], pred_y2[sorted_indices],
        c='limegreen', label='Ridge')
mp.legend()
mp.show()

多项式回归

若希望回归模型更好的拟合训练样本数据,可以使用多项式回归器。

一元多项式回归

y=w0 + w1 x + w2 x2 + w3 x3 + … + wd xd

将高次项看做对一次项特征的扩展得到:

y=w0 + w1 x1 + w2 x2 + w3 x3 + … + wd xd

那么一元多项式回归即可以看做为多元线性回归,可以使用LinearRegression模型对样本数据进行模型训练。

所以一元多项式回归的实现需要两个步骤:

  1. 将一元多项式回归问题转换为多元线性回归问题(只需给出多项式最高次数即可)。
  2. 将1步骤得到多项式的结果中 w1 w2 … 当做样本特征,交给线性回归器训练多元线性模型。

使用sklearn提供的数据管线实现两个步骤的顺序执行:

python">import sklearn.pipeline as pl
import sklearn.preprocessing as sp
import sklearn.linear_model as lm

model = pl.make_pipeline(
    sp.PolynomialFeatures(10),  # 多项式特征扩展器
    lm.LinearRegression())      # 线性回归

案例:

python">import numpy as np
import sklearn.pipeline as pl
import sklearn.preprocessing as sp
import sklearn.linear_model as lm
import sklearn.metrics as sm
import matplotlib.pyplot as mp
# 采集数据
x, y = np.loadtxt('../data/single.txt', delimiter=',', usecols=(0,1), unpack=True)
x = x.reshape(-1, 1)
# 创建模型(管线)
model = pl.make_pipeline(
    sp.PolynomialFeatures(10),  # 多项式特征扩展器
    lm.LinearRegression())      # 线性回归
# 训练模型
model.fit(x, y)
# 根据输入预测输出
pred_y = model.predict(x)
test_x = np.linspace(x.min(), x.max(), 1000).reshape(-1, 1)
pred_test_y = model.predict(test_x)
mp.figure('Polynomial Regression', facecolor='lightgray')
mp.title('Polynomial Regression', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
mp.scatter(x, y, c='dodgerblue', alpha=0.75, s=60, label='Sample')
mp.plot(test_x, pred_test_y, c='orangered', label='Regression')
mp.legend()
mp.show()

过于简单的模型,无论对于训练数据还是测试数据都无法给出足够高的预测精度,这种现象叫做欠拟合。

过于复杂的模型,对于训练数据可以得到较高的预测精度,但对于测试数据通常精度较低,这种现象叫做过拟合。

一个性能可以接受的学习模型应该对训练数据和测试数据都有接近的预测精度,而且精度不能太低。

训练集R2   测试集R2
0.3        0.4        欠拟合:过于简单,无法反映数据的规则
0.9        0.2        过拟合:过于复杂,太特殊,缺乏一般性
0.7        0.6        可接受:复杂度适中,既反映数据的规则,同时又不失一般性

决策树

基本算法原理

核心思想:相似的输入必会产生相似的输出。例如预测某人薪资:

年龄:1-青年,2-中年,3-老年
学历:1-本科,2-硕士,3-博士
经历:1-出道,2-一般,3-老手,4-骨灰
性别:1-男性,2-女性

年龄学历经历性别==>薪资
1111==>6000(低)
2131==>10000(中)
3341==>50000(高)
==>
1322==>?

为了提高搜索效率,使用树形数据结构处理样本数据:
年龄 = 1 { 学历 1 学历 2 学历 3 年龄 = 2 { 学历 1 学历 2 学历 3 年龄 = 3 { 学历 1 学历 2 学历 3 年龄=1\left\{ \begin{aligned} 学历1 \\ 学历2 \\ 学历3 \\ \end{aligned} \right. \quad\quad 年龄=2\left\{ \begin{aligned} 学历1 \\ 学历2 \\ 学历3 \\ \end{aligned} \right. \quad\quad 年龄=3\left\{ \begin{aligned} 学历1 \\ 学历2 \\ 学历3 \\ \end{aligned} \right. 年龄=1 学历1学历2学历3年龄=2 学历1学历2学历3年龄=3 学历1学历2学历3
首先从训练样本矩阵中选择第一个特征进行子表划分,使每个子表中该特征的值全部相同,然后再在每个子表中选择下一个特征按照同样的规则继续划分更小的子表,不断重复直到所有的特征全部使用完为止,此时便得到叶级子表,其中所有样本的特征值全部相同。对于待预测样本,根据其每一个特征的值,选择对应的子表,逐一匹配,直到找到与之完全匹配的叶级子表,用该子表中样本的输出,通过平均(回归)或者投票(分类)为待预测样本提供输出。

随着子表的划分,信息熵(信息的混乱程度)越来越小,信息越来越纯,数据越来越有序。

决策树回归器模型相关API:

python">import sklearn.tree as st

# 创建决策树回归器模型  决策树的最大深度为4
model = st.DecisionTreeRegressor(max_depth=4)
# 训练模型  
# train_x: 二维数组样本数据
# train_y: 训练集中对应每行样本的结果
model.fit(train_x, train_y)
# 测试模型
pred_test_y = model.predict(test_x)

案例:预测波士顿地区房屋价格。

  1. 读取数据,打断原始数据集。 划分训练集和测试集。
python">import sklearn.datasets as sd
import sklearn.utils as su
# 加载波士顿地区房价数据集
boston = sd.load_boston()
print(boston.feature_names)
# |CRIM|ZN|INDUS|CHAS|NOX|RM|AGE|DIS|RAD|TAX|PTRATIO|B|LSTAT|
# 犯罪率|住宅用地比例|商业用地比例|是否靠河|空气质量|房间数|年限|距中心区距离|路网密度|房产税|师生比|黑人比例|低地位人口比例|

# 打乱原始数据集的输入和输出
x, y = su.shuffle(
    			  boston.data,
                  boston.target, 
                  random_state=7 #随机种子:第一次与第二次得到的结果完全一致
                 )
# 划分训练集和测试集
train_size = int(len(x) * 0.8)
train_x, test_x, train_y, test_y = \
    x[:train_size], x[train_size:], \
    y[:train_size], y[train_size:]
  1. 创建决策树回归器模型,使用训练集训练模型。使用测试集测试模型。
python">import sklearn.tree as st
import sklearn.metrics as sm

# 创建决策树回归模型
model = st.DecisionTreeRegressor(max_depth=4)
# 训练模型
model.fit(train_x, train_y)
# 测试模型
pred_test_y = model.predict(test_x)
print(sm.r2_score(test_y, pred_test_y))

工程优化

不必用尽所有的特征,叶级子表中允许混杂不同的特征值,以此降低决策树的层数,在精度牺牲可接受的前提下,提高模型的性能。通常情况下,可以优先选择使信息熵减少量最大的特征作为划分子表的依据。

集合算法

根据多个不同模型给出的预测结果,利用平均(回归)或者投票(分类)的方法,得出最终预测结果。

基于决策树的集合算法,就是按照某种规则,构建多棵彼此不同的决策树模型,分别给出针对未知样本的预测结果,最后通过平均或投票得到相对综合的结论。

正向激励

首先为样本矩阵中的样本随机分配初始权重,由此构建一棵带有权重的决策树,在由该决策树提供预测输出时,通过加权平均或者加权投票的方式产生预测值。将训练样本代入模型,预测其输出,对那些预测值与实际值不同的样本,提高其权重,由此形成第二棵决策树。重复以上过程,构建出不同权重的若干棵决策树。

正向激励相关API:

python">import sklearn.tree as st
import sklearn.ensemble as se
# model: 决策树模型(一颗)
model = st.DecisionTreeRegressor(max_depth=4)
# 自适应增强决策树回归模型	
# n_estimators:构建400棵不同权重的决策树,训练模型
model = se.AdaBoostRegressor(model, n_estimators=400, random_state=7)
# 训练模型
model.fit(train_x, train_y)
# 测试模型
pred_test_y = model.predict(test_x)

案例:基于正向激励训练预测波士顿地区房屋价格的模型。

python"># 创建基于决策树的正向激励回归器模型
model = se.AdaBoostRegressor(
	st.DecisionTreeRegressor(max_depth=4), n_estimators=400, random_state=7)
# 训练模型
model.fit(train_x, train_y)
# 测试模型
pred_test_y = model.predict(test_x)
print(sm.r2_score(test_y, pred_test_y))

特征重要性

作为决策树模型训练过程的副产品,根据每个特征划分子表前后的信息熵减少量就标志了该特征的重要程度,此即为该特征重要性指标。训练得到的模型对象提供了属性:feature_importances_来存储每个特征的重要性。

获取样本矩阵特征重要性属性:

python">model.fit(train_x, train_y)
fi = model.feature_importances_

案例:获取普通决策树与正向激励决策树训练的两个模型的特征重要性值,按照从大到小顺序输出绘图。

python">import matplotlib.pyplot as mp

model = st.DecisionTreeRegressor(max_depth=4)
model.fit(train_x, train_y)
# 决策树回归器给出的特征重要性
fi_dt = model.feature_importances_
model = se.AdaBoostRegressor(
    st.DecisionTreeRegressor(max_depth=4), n_estimators=400, random_state=7)
model.fit(train_x, train_y)
# 基于决策树的正向激励回归器给出的特征重要性
fi_ab = model.feature_importances_

mp.figure('Feature Importance', facecolor='lightgray')
mp.subplot(211)
mp.title('Decision Tree', fontsize=16)
mp.ylabel('Importance', fontsize=12)
mp.tick_params(labelsize=10)
mp.grid(axis='y', linestyle=':')
sorted_indices = fi_dt.argsort()[::-1]
pos = np.arange(sorted_indices.size)
mp.bar(pos, fi_dt[sorted_indices], facecolor='deepskyblue', edgecolor='steelblue')
mp.xticks(pos, feature_names[sorted_indices], rotation=30)
mp.subplot(212)
mp.title('AdaBoost Decision Tree', fontsize=16)
mp.ylabel('Importance', fontsize=12)
mp.tick_params(labelsize=10)
mp.grid(axis='y', linestyle=':')
sorted_indices = fi_ab.argsort()[::-1]
pos = np.arange(sorted_indices.size)
mp.bar(pos, fi_ab[sorted_indices], facecolor='lightcoral', edgecolor='indianred')
mp.xticks(pos, feature_names[sorted_indices], rotation=30)
mp.tight_layout()
mp.show()
自助聚合

每次从总样本矩阵中以有放回抽样的方式随机抽取部分样本构建决策树,这样形成多棵包含不同训练样本的决策树,以削弱某些强势样本对模型预测结果的影响,提高模型的泛化特性。

随机森林

在自助聚合的基础上,每次构建决策树模型时,不仅随机选择部分样本,而且还随机选择部分特征,这样的集合算法,不仅规避了强势样本对预测结果的影响,而且也削弱了强势特征的影响,使模型的预测能力更加泛化。

随机森林相关API:

python">import sklearn.ensemble as se
# 随机森林回归模型	(属于集合算法的一种)
# max_depth:决策树最大深度10
# n_estimators:构建1000棵决策树,训练模型
# min_samples_split: 子表中最小样本数 若小于这个数字,则不再继续向下拆分
model = se.RandomForestRegressor(max_depth=10, n_estimators=1000, min_samples_split=2)

案例:分析共享单车的需求,从而判断如何进行共享单车的投放。

python">import numpy as np
import sklearn.utils as su
import sklearn.ensemble as se
import sklearn.metrics as sm
import matplotlib.pyplot as mp

data = np.loadtxt('../data/bike_day.csv', unpack=False, dtype='U20', delimiter=',')
day_headers = data[0, 2:13]
x = np.array(data[1:, 2:13], dtype=float)
y = np.array(data[1:, -1], dtype=float)

x, y = su.shuffle(x, y, random_state=7)
print(x.shape, y.shape)
train_size = int(len(x) * 0.9)
train_x, test_x, train_y, test_y = \
    x[:train_size], x[train_size:], y[:train_size], y[train_size:]
# 随机森林回归器
model = se.RandomForestRegressor( max_depth=10, n_estimators=1000, min_samples_split=2)
model.fit(train_x, train_y)
# 基于“天”数据集的特征重要性
fi_dy = model.feature_importances_
pred_test_y = model.predict(test_x)
print(sm.r2_score(test_y, pred_test_y))

data = np.loadtxt('../data/bike_hour.csv', unpack=False, dtype='U20', delimiter=',')
hour_headers = data[0, 2:13]
x = np.array(data[1:, 2:13], dtype=float)
y = np.array(data[1:, -1], dtype=float)
x, y = su.shuffle(x, y, random_state=7)
train_size = int(len(x) * 0.9)
train_x, test_x, train_y, test_y = \
    x[:train_size], x[train_size:], \
    y[:train_size], y[train_size:]
# 随机森林回归器
model = se.RandomForestRegressor(
    max_depth=10, n_estimators=1000,
    min_samples_split=2)
model.fit(train_x, train_y)
# 基于“小时”数据集的特征重要性
fi_hr = model.feature_importances_
pred_test_y = model.predict(test_x)
print(sm.r2_score(test_y, pred_test_y))

画图显示两组样本数据的特征重要性:

python">mp.figure('Bike', facecolor='lightgray')
mp.subplot(211)
mp.title('Day', fontsize=16)
mp.ylabel('Importance', fontsize=12)
mp.tick_params(labelsize=10)
mp.grid(axis='y', linestyle=':')
sorted_indices = fi_dy.argsort()[::-1]
pos = np.arange(sorted_indices.size)
mp.bar(pos, fi_dy[sorted_indices], facecolor='deepskyblue', edgecolor='steelblue')
mp.xticks(pos, day_headers[sorted_indices], rotation=30)

mp.subplot(212)
mp.title('Hour', fontsize=16)
mp.ylabel('Importance', fontsize=12)
mp.tick_params(labelsize=10)
mp.grid(axis='y', linestyle=':')
sorted_indices = fi_hr.argsort()[::-1]
pos = np.arange(sorted_indices.size)
mp.bar(pos, fi_hr[sorted_indices], facecolor='lightcoral', edgecolor='indianred')
mp.xticks(pos, hour_headers[sorted_indices], rotation=30)
mp.tight_layout()
mp.show()


http://www.niftyadmin.cn/n/291793.html

相关文章

Python人工智能——向量机,聚类

支持向量机(SVM) 支持向量机原理 寻求最优分类边界 正确:对大部分样本可以正确地划分类别。 泛化:最大化支持向量间距。 公平:与支持向量等距。 简单:线性,直线或平面,分割超平面。 基于核函数的升维变换…

Oracle SQL优化相关数据项

要掌握SQL调优技术,就需要能读懂SQL语句的执行计划,要想读懂SQL语句的执行计划,不仅需要准确理解SQL语句执行计划中各操作及其含义,还需要准确理解SQL语句执行计划中各数据项的含义。本书第7章中,已经对SQL语句执行计划中各个操作的含义做了详尽的阐述,本章中,我们将对S…

基于AT89C52单片机的电子秒表设计与仿真

点击链接获取Keil源码与Project Backups仿真图: https://download.csdn.net/download/qq_64505944/87755619?spm1001.2014.3001.5503 源码获取 主要内容: 本设计以AT89C52单片机为核心,采用常用电子器件设计,包括电源开关、按键…

CAN FD的一致性测试 助力汽车电子智能化

后起之秀——CAN FD:随着各个行业的快速发展,消费者对汽车电子智能化的诉求越来越强烈,这使整车厂将越来越多的电子控制系统加入到汽车控制中,且在传统汽车、新能源汽车、ADAS和自动驾驶等汽车领域中,也无不催生着更高…

Java多线程入门到精通学习大全?深入了解线程:生命周期、状态和优先级!(第二篇:线程的基础知识学习)

本文详细介绍了线程的基础知识,包括什么是线程、线程的生命周期、线程的状态和线程优先级等。在了解这些知识后,我们能够更好地掌握线程的使用方式,提高程序的并发性和效率。如果您对线程有更深入的问题,也欢迎向我们提问。 1. 什…

nodejs的安装以及Dos的命令

1.0 nodeJS nodejs是基于谷歌v8引擎的执行环境,他没有BOM、DOM nodeJS安装 找官网 ->下载 -> 傻瓜式下一步 -> win键 r -> 输入cmd 进入dos操作命令 -> node -v 查看版本 1.1 DOS 命令【掌握】 进入指定文件夹 cd 文件目录 退出到上一层 cd .…

Stable-Diffusion AI画画本地搭建详细步骤

ChatGPT出来后,第一次感觉到人工智能真的可能要来了,因此也顺便尝试了下开源AI画画的搭建。网络上写的教程总是不那么面面俱到,因此本文参考了3篇文章才成功把Stable-Diffusion 本地搭建搭建了起来。参考教程在文末。 本文是本地搭建AI画画&a…

【Java数据结构】优先级队列(堆)

优先级队列(堆) 概念模拟实现堆的概念堆的存储方式堆的创建向下调整堆的创建建堆的时间复杂度 堆的插入和删除堆的插入堆的删除 用堆模拟实现优先级队列 常用接口PriorityQueue的特性PriorityQueue常用接口介绍构造方法插入/删除/获取优先级最高的元素 P…